Just In Time MANET: A New Network Architecture

Benjamin (Russ) Hamilton, Bow-Nan Cheng, Aradhana Narula-Tam

August 7, 2013

This work is sponsored by the Defense Advanced Research Projects Agency under Air Force Contract # FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Outline

- Traditional Architecture
- JIT MANET Architecture
- JIT MANET Components
- Advantages/Research Challenges
- Conclusion

Traditional Network Architecture Following a Packet

Traditional Network Architecture Inefficiencies and Limitations

Application Layer

- Unable to account for stale information after being sent (Application state change)
- Unable to fuse content that is redundant

Network Layer

- Response to link changes might be stale
- Routing decisions stale by transmit time

Link/Phy Layer

- Queue build-up with stale content and packets
- Bandwidth inefficiency with stale information
- Re-transmissions to unavailable neighbor

MANET Scalability

 In traditional network architecture, even with perfect network state information, queuing delays make network and application decisions suboptimal. This is inherently unstable.

Just In Time MANET

- Avoid network collapse by breaking the cycle
 - Maximize freshness of routing for a packet decisions at the time the packet is transmitted
- Just-in-time routing
 - Routing decision made when the packet is transmitted
- Just-in-time packet creation
 - Application data and routing information packets contain the most up to date information available at the time the packet is transmitted

Just In Time MANET Following a Packet

Just In Time MANET System Architecture

Applications

- Need to be able to register traffic demands with routing layer
- Traffic demands should specify characteristics of demand
 - Destination
 - Amount of data / demand expiration time
 - Frequency of transmission
 - QoS
 - Time required to create packet

Just In Time MANET System Architecture

Routing

 Needs to map device transmission opportunities to application demands instead of mapping packets to their nexthops

Device

Needs ability to recognize transmission opportunities in advance to request packets

Just In Time MANET System Architecture

Advantages

- Richer interface between network and application
 - Provides more information about upcoming traffic to enable global planning
 - Allows applications to send the most up-to-date information
- 1 hop freshness guarantee
 - All data transmitted in the 1 hop neighborhood and routing decisions made use best information available at time of transmission
 - Most data in MANET transmitted only a few hops [Ramanathan et al. 2010]

Advantages

- Allows for more efficient networking
 - Can use backpressure type algorithms for network-wide congestion management and routing
 - Backpressure algorithms shown to be throughput optimal [Tassiulas et al 1992]
 - Incorporating traffic generation rate information may allow optimality of backpressure algorithms without significant increases in delay
 - Easily allows path diverse routing
 - Decisions made at time of transmission
 - Better global network decisions
 - Integrated routing, QoS, and congestion control

Advantages

- Multi-hop traffic held in "forwarding datastore" at intermediate nodes.
 - Could be adapted for information compression/fusion at intermediate nodes
 - Would allow for storage of content-based traffic
 - Allows for transparent application of delay tolerant networking
- Compatible with both content-based traffic as well as traditional point-to-point and point-to-multipoint traffic
- Allows for application-specific queuing control at source
- Easily interfaces with existing applications through sockets interface gateway
 - Allows existing applications to still work
 - Applications that require real-time control of data transmitted use new interface (e.g. routing, VOIP, adaptive video streaming)

Research Challenges

- Completely changes networking paradigm
 - Device drivers and medium access algorithms need to be able to predict transmission opportunities in advance
 - Routing layer needs to be able to quickly match device opportunities to application demands
 - How can good decisions be made quickly?
 - What decisions can be made just in time?
- New architecture changes constraints of existing research
 - Algorithms for integrated routing, QoS, and network-wide congestion control
 - Interactions between application, network, and link layers
- Opportunity to investigate combinations of content-based networking with traditional networking

JIT MANET Comparison Summary

	Traditional Networks	JIT MANET
Architecture	PUSH	PULL
Routing	Rule-based	Case-by-case
Queuing	At device	In application
Packet construction	Before device-layer queuing	After App-layer queuing, before transmission
Per-packet processing required	Low	High
Decision Freshness	As old as queuing delay	Fresh at transmission
Stable near network capacity	No	Potentially

Questions?

Benjamin (Russ) Hamilton

benjamin.hamilton@ll.mit.edu 781.981.4855

Bow-Nan Cheng

bcheng@II.mit.edu 781.981.4997

Aradhana Narula-Tam

arad@ll.mit.edu 781.981.0210

References

- L. Tassiulas and A. Ephremides, "Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks," IEEE Trans Automatic Control, 1992.
- R. Ramanathan, R. Allan, P. Basu, J. Feinberg, G. Jakllari, V. Kawadia, S. Loos, J. Redi, C. Santivanez, and J. Freebersyser, "Scalability of Mobile Ad Hoc Networks: Theory vs practice," In Proceedings of IEEE *MILCOM 2010*.

Used with permission. The views expressed are those of the author and do not reflect the official policy or position of DARPA, the Department of Defense, or the U.S. Government.

Backup

MANET Context Assumptions

- Low data rate channels (spectrum is scarce)
- High processing power/capability (Moore's law)
- Each node contains both router and applications
- High mobility
- Large network